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ABSTRACT

Several theoretical and empirical procedures are combived into a singlc

computer program to predict lift drag, and center of pressure on luite general
vwing-body georletries. File method is applicable f7or Mach number /ero to three and

ifangle-w'-attack zero to about fifteen degrees. Computed results for severnl
confitinrations compare well with experimental and other analytical results. It costs
about five dollars per Mach number to compute the static aerodynamics of a typiial
wing-body shape on the CDC 6700 comptuter.
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1. INITRODUCTION

I'lle geal of (lhe pror,-ent rcsvarh is to dc:veloj) the capaibility to compute static
aerodlyn,.umics onconfiguirations sukh js guided anid uhguided projjectiles for the Machi
number range ;ero to thiree and angle-of-at tack range 7ero to about twenty degrues.
The Machi number and a ngleý-o fat tack, range cover a nmajority of' present and
probable fuiture design requir.Žnents foi gun latinchied weap~ons. Thswrkrhreoe
is a naimla1 extension to the bodx alone aerodynamic prediction methodology
develored in Reference 1. Induded hiercin is an outline of tile theorctital and[
empirical methods used to .ompute lift, drag, i~nd pitching moment on wings and,
tails. Also included arc procedures to dtirermine thle various interference effects
which occur betweci the wiiig-til or body,-tail. A description and listing of the
entire wirg-bodN coniifl~er program will appear &,~ part If oif this report.

The ove~rall Iguiding principle of' the current work is to use aiiaIl tical methods
which yield reasonable accrciesv, ;md iequire reasonable computational time. For
areas where the state-ol-the-art is such that analy~tical procedures do not meet the
above requirements on accuracy aind c:ost. empirical prot-e~ucs are employed. This,
problem occurs mainlyv in transonic flow.

Tiere have been several work-, which pertain to the pre.sent probklem Thc, first
or these is that of" SaIflell, et ali 2 whlo devele, ed a computer program to compu)Lte
static aerodyn~amics on lo%ý aspect ratio missile configuirations, The mlethod could K

appiedforlare agle-of-at tack and ' r subsonic: thi ough supersonic Mach numbers.

However, the (Irag was computed using handbook techniques and thle lift of the
wing alone x.as found from in empirical formula for low aspect ralio wings. Thus.
drag results ,lie quite biaccura 'e tat ,mall angles-ot-attack ), as well as lift for high
aspect ratio contigura tions.

Anotl~er method which is; availade for spin--stabiliied (or body alone) tproJeetiles
is the GE 'Spniiier .program.' -, This programn. wh~ich is compleitely empirical, gives
good results for most stand..-d shaped proje~tiles but is too limited ill scope to
meet the present needs.

The most detailed method of those previously available is that otf "Woodward.4

Woodward uses perturbatioo theoiy to coniput- (lth- pressure distribution on
wing-body combinations in ,uhbsomt. and] tipersonik. flow. I-howevcr, the bodies must
be pointed and the wing leading edge sharp Also, hie does not calculate thle base
andl skin-friction drag or the non-linear a ngle-o f-at "ack effects.

As is apparcnt i rom fihe ahiwv, dicsctin~n. i~one oft thie p w'xiows works canl in
itself accuratcly compotil totalI lift. draig. w~d pi tchiing, momei onl xing-body



combinations for Mach numbers 0 to 3, and angles-of-attack 00 to 200. Moreover,
no attempt is made to handle the complicated body and wing geometries (see
Figure 1) which arise fiom gun !aunched guided weapons.
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a. SPIN STA31LIZED PROJECTILE

b. UNGUIDEY FIN- STABILIZED ?ROJECTILE

c. GUIDED FIN-STABILIZED PROJECTILE

FIGURE 1. BASIC CONFIGURATIONS (ILLUSTRATION ONLY)
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H. ANALYSIS

The ir-nroacli ,)f thle pi eseni work is to break thle missile ciifiptlra tionl down
into it's indm diwl comlponenfts tomposed of body alone. will,,. and Canards al,-d
theln to account separatek for tile varlow., intlerferonce effects. '1hw, is opposed to
iiijat~icautiýai1 illodelling the entire C~iIIlufdlri0 Sill lltWON sinlaio is , as X (10111do! in thle
wvork of Woodi aid 14 Woodvward ton.idcred lthe w'ing-hodh %inlultaneotisly thirouigh
an appropriate souR e and dink(lsribmli,,n, where the sourcte. f rom thle body Wvere
:Jlowed to intlue-Ce thle %vwiii solution and vix: vcrsa. This i-. lairl% straightforward
for poinlted Hnoed bOdItes aod Wing~s with sharp leading edges. blit for bilunt nosecd
bodies and blunt leading cdige wing'as, a', i' thilae ill thle pr.:\et wvorl<, thle
problem is coimplicated coiisidvrablý. Niorýover, assumtiing, perllurkaiw to . thorie, areý
us,ýed to Calculate thie inl iscid aerod) namii&. flie approach Of osdrn the
individual coilpolen ts separa telV sho01n 1,1yi1d total forces and momeniit which -,i e as1
good as those: that would bc obtmined bk Considering the tol fnigurallonl as a whole.

A. Blody Alone Acrodyliami~s

Thle l'odv alolic aerod% namiic anvhlYsis appears inl ke,"vienL e I and will not
be repeated hiere. However. a sUn11.udrNv Of the various miethods for computing b)ody
alone aerodv namllcs appemrs in1 Figure 2. All thie methods me %lam, rd in the
literature ( References 5 throughi 10) With thW e\ce~tiOn o1' tile emllpirical schlemes
derived for transonic lif't and \,.avc drag and thie combined NewNIt oniaat-pertuirbaaI~on

Ctheory for calcula ting nose wave di1a11 inl Supersonic I low\ The combined
Newt onia n-,er uirba Iion theory v. as dleveloped so teasoll'Ible iesulis for static
lerodynam,,% could be obtained at low -supersonic Maclh iiunioo'i fob r blunt nosed
configuratioi~s. Previously, the aui aba e theeories% were cithei too JInL11Ai uie'' 1) 01o too

complicated' 1 2 1 for use at the lower end of the Nupers-nik IMacli ranizc

B. Tail or Canard Drag

As in the case of' ,n h ~mci ody, thie the%\n, 'it~ ing, dima,
isý comlposed of wave, skin-friction1, and a I railing edge separation dri- it' (ifte tradling
eýdge is bluint Or ilhe rear sctioii of' tiL' .111 oil has a lar-e slope ho,. trailing edgeý
separationl drag 1, anlalogou% it) base pre-aure dragy on at bod\ oI tevolutioti. Ill
aiddition to these drag cornponoci1 The \vings Call cauise anl addlilio nal drag froiuk
body base pressure changes dute tip the plteseice of' 6,n1. Fach of 1these wing drag,
Components \01il be treated eCpalatdv , ;,doxx

4
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1. Wave Drag

It will be assumed apriori that the wing is symmetric at ,ut the x-y
plane so that no ... "ber is present. Furthermore, the wing will be assumed to be
th n wuh either a modified double wedge (Figure 3A) or biconvex airfoil section
(Figure 3B). However, by assuming a modified doubte wedge only requires that
straight lines exist between points A and B, B and D, and D and E (see
Figure 3A). These straigiht lines could then be any percentage of tile entire chord.
For example, if BD were zero the airfoil would be a double wedge design or if
both BD and DE were ze;o, the airfoil would be a wedge. Also, either the biconvex
1o modified Jouble wedge design may have blunt leading and trailing edges and the

thickness to chord "atio may ,,ary along the span. The wing ge ierators GK, HL, IM,
and JN are assumed straight.

Siirce the wing is thin, the linearized three-dimensional equation of
motion governing the steady flow field is:(13)

g2o6 - -y Y = 0 (I)

wlere subscripts indicate partial differentiation. Here, the velocity potential O is
iclated to the perturbation velocities by:

X= u(2a)

= v (2b)

w (2c)

lhli boundary conditions required for the solution of the linear partial differentil
I quation 01) are that the fl - must be tangent to the surface:

w(xy) = OZ(Xýy. 0" (Xy,0 (x,y) (3)
ax

and that the perturbation velocities must vanish upstreain oý the most forward point
A tile wing. Referring to Figure 3A, this most forward po;nt is at x 0 so that
tle second boundary condition is:

6
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9(U-; -- ,;,/1 = 6 -,y,z) = 0 (4)

[lhc plu'v or minus ,,uper;ript Ime,:w the particula, axis is approached from the
positive or negative side. repccti-' . u),ie to the symnletrnr of the airlolf.
hIquation (131 indicates that it make,, no difference rom which side one appioaches
tile axis I = O.

Equation (1) ks valid only where the perturbation velocities aie small.
Thi,. mea,, that in the nelghiborhood of a blunt leading or trailing edge-. ,oni o)tlw.-r
m101ethod mnust be applied, Consider first a ,enwil three-dimensional wing with shlrp
leading alnd trailing edges.

The general solution to Equation I) along the airfoil suarface (I (1)

is,( 14)

0) - /f"~IA \%'(xl,.il)dxldyI

where ,, indicates the region of integration. The source strength \vwx, y I) is related
to the 0ocal slope of t(itV airfoil surlace through tile boundary ,Oldition

Eduation (3).

Inh previous works,, w(I NI ) Wassun e C Ol Sconsta or ai utio(111 of x

only (tile slope of the airfoil ' urface Was the same aill along the span), so the
integration of the above integral could be carried out in closed form for siniplc
wing plan forms.'l- l In the preent :analysis. the slope of the wing is allo\\ed I')

vary in tile spanwise as well azs the chordwise directionI so C li n e in at ioin ol

Ilqulalion (5) cannot, in gene-ral, be carried out in closed formll. The 1n,,,,t
straightforward method of solution, is then io define the slope of' thle given Siirface
and carrx out the doube.C integrat ion b, numerical quadrature. However. one muII
be :iware of the singular nature of tilhe ouble in te-,,lt where (x- \ 1 -- = 371\ \ I)

during tlih inlheera tiopt An, llA he ai terna iw i% to, aSSIn' Ilhi tt oi a nmall

elilleent of tile wing surfaice, W(\I IN) is constant. I iwim . if' the region of ink ri t h• ,
of"' Jillatiot i5.) E5). , is al'm llcd to be ovel a s.all elmlent of tile Wing, olle Ina\

;7, write.

n C- x! )- - :(-y- y1)"

K



Equation (to is now in the fornn given in Reference 13 for simple planfonn
geometries and flue integration czn be carried out directly. Again: it should be
Crilmphasized that w(xyl iS t(ie Slope of thie airfoil surface at a given point and varies
for each el.,ncnt on the wing.

]lhe closed form solutioj! of Equation (6) depends on whether the
.-.ing gencritor, are subzoniL or -uperhonic. Referring tn Figure 3A, a subsonic wing

Svenerator wdul.t exist if the Mach number normal to line GK were less thaln oil'
miand a supersonic wiaig generator wouid exist if M, > 1. The same applie, to eacn
of the other wing generators RL, U.M, and IN. For the biconvex airfoil, Figure 3B. a
Stonfintios distribution of wing generators is placed between the lines GK and JN.
Eadi wing geverator is analogous t( a line of sourccs and sinks with strengths
%.ufficieiit to k.-cp the, flow taigent to the surface.

a. Subsonic Source or Sink Line (SOSL)

If the wing generator is subsonic, the induced velocity at a given
lpoint P. due to the SOSL, is dependent on thie location of P relative to the SOSL.
Reerring to Figure 4A, if P P1 the induced velocity is:"

2 '~~~iL~i~j2cos;lf 1- 7

where w is dtermined from the bound~ary condition ::nd is (for the airfoil soctio,•
at y = YI, I

Wd7\wx1 1 I (IX
Pt" dx P

InIi lquation (7), the def initions'7)
K tan A t 7a)

l"ie betetn kcd If P) P, the induced ve!oity at 1), due to a given SOSL is:

10
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Ai tile wing tip. thcre i., an additional disturbance v.,ithin tile \iach line emamdtiI,
.rom tile tihp le:adin, edge (Fig,!'r 4B). The induced velocit\ in this rcgion. P 1

The absolute value of a is taken because a is actually negative for the point IP,
Ilhe induced vdocity at any poinIt, say ) = P4" outside of the Mach ilnes enmanati'n
romin the beginning of the SOSL is 7ero since ithis point is out of the lone of

•" !,nilueilce.

Ib. Supers nik SOSL

If the wing generator is supersonic. the Mach lines fron point Ii
"in Figure SA lie behind the SOSL. If in Figure 5. P P-l)1, then the induked
%elocity a! Pl Jue to the distiurlance caused by the SOSL is- 13

-. 5\ --, - (101

It' P) P,. the .nduced velocity is

Referrirg to Figure 513. the additional induced velocity inside Ilit, area boinded bh
-L the tip mid the Machl line ennaniating from the tip (P 13 ) is:

\7N( \ r 3 ' . ) I 2 1
p I"- J-Z2os '(12)

•x/T-7r L~ltIi +1O0.

""1+
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Again if P = P4 " the point is out of the zone of influence of tile SOSL and thus
the induced velocity is zero.

'rThe induced velocity at a given point on any whig geometry can
now be computed by the proper superposition of tile triangular SOSL bhown inl
Figures 4 mind 5. Thib is because of the l,,,ar nature of' the governing flow-field

Equation (i ). As an example of how the above superposition principle works,
consider tile wing shown in Figure 6. For simplitity. the slopes X, and X2 are
constant. The ving AHJD c•n be represented by the sup.-rposition of five SOSL.
The fiist has the planforin AEH and source intensity:

w(x Py ) V-X!

where X, is tl:e slope of the segment AB. Tile second has the phlnform BJI and
"intensity

w(xy) l (x - x1 )V,

and the third the planform DJG and intensity

w(X1j.y) -Y
(p~y) =-2V-

File other two SOSL represent the tip effects. They are the planforms IIJL and IJK
and have source intensities of opposite signs than those representing the wing.

The above procedure can be applied to a wing of general
planform. The only difference is that for each point in qý estion, the slope is not
constant as was the cj,e in the simplified example. Then for some general point
located on the win, surface, the total induced velocity due tL all sources and sinks
im flbmd by applying one of the Equa tions (7) through (12) for each SOSL. The
particular equation applied depends upooi the Itcation of the point relative to the
SASL and the Mach line as discussed earlier. Tlhese individual c:ontributions are then
sumninled to get the total induced velocity. Knowing the total induced velocity at a
point allows one to calculate the pressure coefficient at the given point by:

14
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c P lx~y) =-2o(jxmy~O) (13)

The pressure coefficient, can b, calculated at a given niumber of' spanw it~ and
chordwise locations. Thie drat: of a vivenl ai'ioil seC 'll M t(lie styalnwist. Stationi

Y y is thenl

AA

Cd C(Y~ k . Cl,(\.YX )W('ý-'A )(lX (14)

The total dIrag. for one ýiti of senlispan h/2 is theni:

CD { C(ct)dy (15)

Where Sit b/2(cr + e1) For cruciform fins. thle total drag coefficient is:

If it is desired to base the drag coefficient onl the body cross-sectional area, thle
lFiuation (1 6) mi'st be multiplied by tihe Iaietor SW/ le

['quations (14) aiid] (10) call be integrated by numerical
quadraiture it' the generators of' thle wing, airface are super-sonic. If the gwenerators aie
subsonic, linear theory indlicates the pressutre coefficienits go to infinity at thle wing
generators. Physically. this cannot lie true which mecans that for subsonic SOSL
lInear theory is not valid at thie SOSL. The reason is that the veocity pert t -itbt ioii
inl thle Vicinity of tile discontinluities are no lon~ger small, violating one of' thle
assumptions in) linear theory. However, thle Velocity perturbations ire smlall a sli~ght
distance from the SOSL so that linear theorý canl be applied. Numerical expcrimen ts
nidicated at distance of liv! thou-sandthis of thle chord length from the SOSL was

sutfficient 'ind the 'value of pressur& cak~ulitd At this point was assumied to c\ist upl
to thle SOSL.

[hle previous" allalys:j ple to airf'oils with sharp leading and
'railing edgevs If the airfoil leading or trailinlg edge is blunt, some other method
inwut be applied in the O cinit\ of'tlt 0u ii a ted portionl bei ause the asumilptions o



perturbation theory are violated therc. In analogy to the work of Refert flce I,
modified Newtonian Theory will be applied to thle blunit leading edges and an
empirical afterbody separatibn pressure corrtctioni applied at the blunt trailing edges zs will
b, discussed iater.

The modificed Newtonian pressure coefficient is

cp= ce, S412 0 (17)

where 0 is the angle between a tangent to thc local body surface and the
ireestreami direction and %liere the stagnation pres-sure Loefficient behind a normal
shock is:

_ _ _ _ _ _

If the blunt leading edge of the wing is cylindrical in a oircction perpenidicular to
the leading edge. then this circular shape appears as an ellipse in the streamwise
direction for sweptback wings. Thus, for ,, given point onl thle airfoil leading edge
with coordinates (x,y.z), it can be shown that t~eAppendix A):

Oe"'.Y,') =tall {oA, [FL (y) x cos A} (19)

Note that [~quation ( 19) assumes tile leading edge radim, miay v~airy along the
span, that is r, , (y). Th pressure coelficient ovor thle elliptical leading edge
canl now he calculated AI~ each airfoil section by com-bining Equations (1 7, (1, 8),
and ( 19).

The quesdicn that remamns is whecre does one start the
perturbation theory aft of' thie blunt leading ed~e and where does one enld thle
nmodified Newtoniati Theory. Before proceeding to inswer this question, it is helpful
to review the work of ROlcrence 1 , which c'ombined the seioncl order p~erturbation
theory of Van D~yke with thic modified Newtonian Theory to calculate wave drag onl
bmiui bodies of revolution. In that work, the perturbation theory was started as far
upstream onl the sp~herical cap as p)ossib~le while still getting reasonably accurate

petraio pressure cj~efficients, It was folitid that slopes of' 25-30 degrees were



optimum. Althougji the results were unpublished, it was found in that woik tPlat if
first-order perturbation theory were used, this angle must be reduced ýto abogt 15
degrees. Also, it was found that second-order theory accounted very well i r the
over-expansion region around the spherical cap whereas the first-order theory dii,
not. The important analogy to be drawn from this discussion is that for tl,,ce
dimensional wings, a first-order (rather than a second-order) theory is combined
with modified Newtonian Theory to calculate wave drag when the leading edge is
blunt. Thus, in analogy to bodies of revolution, one would intuitively expect the
"angle where perturbation theory begins to be around 15. A discontinuity in
pressure coefficients of Newtonian and perturbation theory is expected at the match
point due to the failure of the first-order theory to account for the over-expansion
region.

Figure 7 compares, qualitatively, the first and hecond- order
theories when combined with modified Newtonian Theory. The second-order theory
is started at say 0, = 300 and the flow allowed to overexpand around the shoulder
and recompress downstream. The pressure coefficient will usully intrsect that of
Newtonian Theory and this is the match point, x2. indicated on the figure. This
combined theory usually follows the experimental data reasonably well. The
first-order theory starts at 01 = 15' and the pressure coefficient (toes not usually
decrease enouglh to intersect the Newtonian theory. hlence, a discontinuity in the
pressure coefficient curve for the entire configuration exists at the match point, x,,
For drag calculations, the Newtonian Theory is used up to the point x, tVlich
usually will be at the juncture of the cylindrical leading edge and the airfoil a-fter-
body) and perturbation theory past x1 . The drag coefficieit of the blunt leading
edge is (see Appendix B):

CA 1, R,,vS bC,, cos (si si3 01

vwhere
(r, - + (rLI.)t

Ravg 2

The drag of the section aft of the cylindrical leading edge canl be found by
numerical quadrature of Equations (14) and (16).
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2. Skin-Friction Drag

In general, the boundary layer consists of a laminar, transitional, and
turbulent region; however, no apprecieble errors in total drag will be realized by
assuming a laminar and turbulent region with transition taking pla•,c inbtanteously.
Moreover, transition from laminar to turbulent flow is assumed to occur at a
Reynolds number of 500,000 based on the wing mean aerodynamic chord.

According to Van Driest, the skin-friction drag coefficient for a single
wing is then:

CA f ICfT)',+ Cr - (CfT) (21)f I " Sref

I lere (Cc )- and (CfT).- are the mean skin-friction coefficients ol turbulent flow
based on the mean chord and transitional location on the mean chor(., respectively.
They are computed by solving:

A C )"/'(T wl )04(sin- 13 B +sin-i B2) log (RN Cr (r - log, 0 (2 )(2

implicitly for C,. where q for air is 0.76. The Lonstants A, B3, and B1 of
Equation (22) are defined by:

2A2 - F F13 -1 .2 + 4A 2)"/ 1 12 (1 -2  + 4A 2)' -

A -IL -)M ,I
2. . 1 = , 1 - I )/2M :

iYi L I)2 Tw/T_] TNI,. -I

The Reynolds Number of Equation (22) is

V,
RN (• 23

2()

4i



where 2 is either ý or R. The wall tuniperature can be related to tile freestream
temperature byl

[f. T = I +0.9 -- M2  (24)

Finailly, the laminar skin-friction coefficient Ct, isq

1.328 (25)(C] •

where the Reynolds number is based on 7.

3. rrailing Edge Separation Drag

If the trailing edge is blunt or if its slope is large, the b1oundar, layer
will separate somewhere on the rear of the wing. This results in a high drag region
similar to that on the base of a projectile, except here tile separation iS a
two-dimensional as opposed to a tl,r.-tdiiensionl phenomenon. The pressure on the
rear of the wing will then be that of a two-dimensional rearward facing step.
,(hapnian1 Is) presents experimental results for a blunt wing with no slops, at tile
trailing edge. These results are presented in Figure 8 as a function of Malh number.
Note that thl- data for M, < LI has been extrapolated based on the general shape
of' the three-dimensional base pressure curve presented in Reference I. If (rl, )F and
h( I Ij) are the radius of the trailing edge hqlpitn,'ss at the root and tip. respectively.
the trailing edge separation drag for one fin is (see Appendix C):

td( r. )r 1,), I. W

CA 2srel ]" (2o)

I oi cruciform fins this becomesv

"I( S rTI )r + (r, t27)
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4. Base Pressure Drag Increase Due to Presence of Fins

There are several primary lactors which determine tile effect or 1ins
oil base pressure. Thest. factors are fin location, thickness ratio, aspect ratio. profile.
sweepback anglk, and number of fins. Based on the siall amount of experimenital
data available, it is not possible to accurately account for ani of the above factors
for a general configuration. However, order of magnitude effects (A, two of the
%,ariables, fin location and thickness ratio, can be estimated using References 16
through 19.

To estimate the effect of fin thickness to chord ratio on base
pressure, it will be assumed the fins are flush with the base. The effect of the fins
not being flush with the base will be accounted for shortly. Figure 9 is a plot of
SACpB/(t/c) versus Mach number. Here

AC 1,1 = (CPB )With fin h- (el'V )n o fin s

The points above M. = 1.5 were taken from the data of References 16 and 17
whereas those points below M_ = 1.5 were taken from Reference 19. Again it
should be emphasized that there are too few data points to put a gfea (eal of
confidence in this curve. For a given Mach number. M1 , the increment ia base
pressure due to the presence of fins is then:

(ACi')cV (27)

Tile values of t/c which (27) was derived for were ten percent or les".

The work of Spahr and D)ickey17 hjas shown that if the fins
were placed upstih-im a given distance rather than flush with "he base, the effect on
base pressule is not as great. Furthermore, if tile fins wer1 mo Cd far enough from

the base, they would have no effect oil base pressure, the amount of this movement
being dependent mainly or, fin thickness to chord ratio and profile. As seen in
Figure 10, this distance varies linearly with t/c ulp to values of 0.10. The curve in
the figure is then extrapolated from tic = 0.1 to tie 0,.2
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Now if a linear variation of (AC1 B t is assumed between its maximum
when the fins are flush with the base and zero when the fins are far enough away
from the base, then Equation (27) may be modified in the form:

[ACrB (t . >0.1

, cLB =- - 0( j c) C (28)

(AceIt)f = 0 1t < 0.ix
C c

X/C in Equation (28) is the distance (Gi chord lengths) upstream of the base. This
empirical relation was derived only for cruci'ornh fins.

C Tail or Canard Alone Lift

To calculate the normal force, the wing is assumed to be represented by a
flat plate of given planforin with zero thickness and camber, This assumpti, m is
justified because thickness has only a second-order effct on lift (except for thick
wings in transonic flow) and most missik configuration, have wings with zero
chamber. Thie melhods used to compute the cmnard or tail alone lift are different
for subsonic, supersonic, and tran-onic flow and will be discussed separately below.

1. Subsonic Flow

'IlThe basic equation of motion is Equation (1) with boundary
conditions (3) and (4). The ooundary condition (3), under tile assumption of zero
thickness and chamber. mam be nimplified to-

w(xy) -• y (29)

In addition to these boundary cnditions, the Kutta condition (which requires the
velocity on the upper and lower surfaces at the trailing edge to be equal) is also
imposed for subsonic flow. Equation (I) may be simplified somewhat by using
(;othert's rule' 20) to relate thit' compressible subsonic normal force om pitching
moment to the incompressible case. That is:



-(- M(. (30)

•(C,.)I.N I ,:.• )M = .,(31)

"However, it was assumed apriori that tile only contribution to lift was due to
angle-of-attack, so Equations (30) and (31) may be simplified to:

S~(CN )o,o,• ,,•
"(CN- )(C* .,,0 At0 (32)

I - M

(CM )MoN .•A.ct = OOk0 (33)
1 - M2

The way this rule is applied is as follows: given a wing of aspect ratio, M.,
freestream Mach number, M-, and angle-of-attack, o:, the normal force and pitching
moment can be obtained by calcu!ating the normal force and pitching moment on
another wing of aspect ratio PAR, Mach number zero, and angle-of-attack 60Z. Using
the above relations, the normal force and pitching moment on a given wing at any
subsonic Mach number may be found by ,alculating the aerodynamics of an affinely
related wing at zero Mach number.

For M. = 0, Equation (I) reduces to La Places Equation:

S.y +4ZZ =0 (34)

The solution to Equation (34) can be shown to be:(21)

O(xyz) = -- AC"(x-Iy 12 j +yy )"2 +dxdy 1 (35)

s
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where AC = CP- CP. It is riquired to determine the pressure loading ACp over
the entire surface. Following Chadwick t2 2 '•. Equation (35) is first differented with
respect to and tile limit as ., -, 0 taken. The result is then equated to the
boundary condition, Equation (29). to obtain:

S+ f-J)2 dx1 dy, (36)
(y= L -X

rie cross on the y, integral indicates a singularitv at y yl, in which case
Manglers principal-value technique(2I) L.an be applied. The details of the solution of
the integral Equation (36) for AC1,(x.y) will not be repeated here as they are given
in detail in many references (see for example, Reference 22). Worthy of note.
however, is the fact that EFquation (36) is an integral equation for which tile wing
loading ACp is to be found as a liiear function of angle of atiack.

Once the span loading ACp(x,y) is known over the entire wing
surface. the normal fore. at a given spanwise location is:

C, I I= -- ACPdx (37)
Sc "'l. F

Tile total normal force for the entire wing is:

b!2
2f

NC =- cCcdy •78)

The pitching moment of a given airfoil wection. about tile point whwre
the wing, leading edge intersects the body, is then (positive leading edge up):

CT E
C xAC dx (39)""ref f-
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The total pitching moment becomes.

2 bi2 -

- cCm dy (40)
, Ser

If it is desired to calculate the pitching moment iibout some other reference point,
then

C0 =C + ICN X041
IM I N rcr

where x0 is the distance from the reference point to the juncture of the wing
leading edge with the body. The center of pressu:re of an airfoil section is:

x U- (42)

or of the entire wing

x C% (43)• C I'= C N

Finally, the spanwise center of pressure of a wing selnispan is:

b142
j cCn ydy

f cC 11dy
• ()

Equations (37), (38). (39)L (40), and (44) can be solved by numerical quadraturt. such aw
Simpson's rule, with special attentio!- given to the leading edge singularity

Y
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2 Supersonic Flow

Hfere again Ftluation HI) is valid along with the boundary conditions
-;(4) and (29). However, it will be assumed inl the present wvork that the wing,

trailing edge is supersonic (Mach number normal t(, wing trailing edge is greater than
one) so that tile Kutta condition need not be applied. Two cases will be
considered: supersonic Ileading edges and subsionic leading ciges. For both cases the
flowv is conical inl nature from the vertex point which is the intersection of' thle
wing leading. edge wvith the body.,

a. Supersonic Leading Edge

Since the flow~ is conical, the lo-w properties ire conlstat-t along
ray,; emanating from the vertex point and lying behind the Maclh ine. Refcrring to
Figure I I A, where thle leading edge Mach line intersects the wing trailing edge, this
mecans that if thle flow properzies it one point onl the ray are known thyare
known all along thle ['Iy. It is then a matter of' computing the hiduo-d velocities
and hence lifting, presIiurcs onl sc~erzii rays from point 0. Thle lifting pressure onl any
onle ot thlese rays inl Vegionl 2 IS. 13)

wvhere q? and ai were define~d by 7 A Ahead of the Mach line, inl relgion 1 , the flow
is two-dimensional so the lifting pressure is constant at:

4a
AC, ACP -12 4o

If' the win,~ we!re tapered to a poin t, the ,above two relationship.;
would allow, complete determiniiatioil of' tile lf*ting pressýures over the witig. For most
practical cases, the wing, tip is not poinlted -,( tip effects must be: accomnted For.
'[he tip) affects thle pr"Sure Within the Mlachl line from thle tip lead ilig edgO
region 3). Within III,, r,ýgiohi thle flow is, again Conical alonge rays troll) poin)it I) so

tile li1111 ow prCs.ujrC ci I~ y thle ip) i,,,(23
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'lt-~ ori-ginad equation of m1otio~n, Equation (1), is linlear so that superpositionm of
"~Outmons is allowed. Thus,.1he total lifting pressure in region 3 is:

AC1, =Acp I + act)

If the situation arises such that the Mach lines inters~ect. as shown at the bottom of
F'igure 11 A. then anl additional pressure of AC1, is created] in region 4. Hence. the
totld lifting pressore in regionl 4 is

AC,, AC1,) + ACP
2 3

lMe second case to consider when the li~ading edge is supersonic
When the leading edge Mach line intersects the tip) as llustrated "n Figure I I B.

fl~c lilting pressures inl rtgions 1, 2, 3, and 4 are calculated inl tfl sano! manner as
whoji thle Maclh linc intersects the trailing edge. Hlowever, in region 5 the lift to be
cancelled along the tip) is variable (see FPuation 45) as opposco to the constant
value cancelled in regionN 3) and 4 (see Equation 40). [his compl~icates thie problem
ýowo'what in that a su mmat(ion (or integration) must now be p)erformled to calculate

dile w1nceMllalj lilt inl region S5. Ref'rring to Figuire 1113. the region 5 is broken
dowAII into a limte wimber of intervals, in the following manner. (Conical rays froim
Owa vertex at 0I are projected behind thie M'vach line OA and intersect (hie wing,, tip) at
equali inltervals alo'ng (hie tip (For example, rays Qi and OK). Lines are (lien drawn
hll) the pioints- of intiersoction on the wing tip) %trallel to (lie Mach line Al until
11'v poinkt P( N,V ) is enclosed. Thle difference inl AC, across one of' these intervals is
witat imust hký caucelled throughout thle regio.n S. For any gixen interval tMen, saý
1K rums dlffcrenme in pressuie is found by applying t'qtatioii (45) to eadh of' the
hi S trom 0 passing throuigh J and K. That is-

AC, (\1b,1)A! vb2 ACp (X~h,2)
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!F
ACP (x.b12) - - - sill_

K1 - (-2

Tihe effect of this cancellation pressure at any point PeX.y) is then:

4KC, (x,) ACP (x,bj2)- tan +(48J P J K 7.r - jp(l + 77

Now the interval JK is any interval upstream of the Mach line from P passing
'Iough tile wing tip. If II is the total number of intervals upstream of' P. then the
total lifting pressure coefficienlt at point P(x.,y) within region 5 is:

I-' Inl

ACP= CI + zWP + 2:1~
1- 1I

vwhere AC is given at each interval b. Equation 148).
iPi"

The lorce and moment coefficients can now be found by
substituting the expressions for ACp in each region into the Equations (37) through
(44) and performing the indic'ated operations. The integrations could be carried out
in closed form for regions I through 4. but the formulas are very lengthy for even
the inmpliest cases.,'2'" A more straightlorward approach is to simply numerically
mtegrate the ilitegrals over the entire surfact . particularly since the pressures in
revion 5 ha'e to be numerically integrated.

b. Subsonic Leading Edge

For subsonic leading edges. the velocify and lifting pressures
approach intinite values near the leading edge. The solution fbr AC,, is complicated

4> ,,,,mewhat by flus singularity, but due to the conical nature of Ihe flow from the
icrt,.x points 0 and 1) (Figure 12), a closed form solutfion can be obtained, For
mrehim I of Figure 12 this is:(21)
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4cp= ACp ta (49)A~t'= "XI" =E tan A, viVi - oo

Swhere E is a constant dependent only on the leading edge sweep angle and Mach
m mnber.

That is,

E(k = I - k2 sin- OdO (50)

'1i1d k = %/ - AL, The value of the complete elliptic integral E(k) has
been tabulated and appears in standard mathematical handbooks.

'iThe lift to be cancelled at the tip is variable as was the case for
"supersonic leading edges when the Mach line intersected the tip, However, in this
cas,. the integration can be carried out in closed form. Thus, the cancellation lifting
pr.ssure is: 2 3

4c [ F2(b/2-y)
P.AC P, = 312E (=') - ,K(kj x+j y (52)

-2 71x252y2 K(k') - K(k)E(k' + K(kFlk',.ý

-2x 2L2)[

: = ie k (1-- a0 1)(?- I ) k' %I i

i (x + j3yrt) Pb/2
'' siWn-I (3b12(I ++i~ x 03(y - b/2)
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Here F(01 .02 ) and E(O,1 02 ) are elliptic integrals of the first and second kind,
respectively, which again can be found in any standard mathematical handbook. The
complete elliptic integral K is related to F(,O .02) by K = F(01 ,r/2) and the
complete elliptic integial E of Equation (50) is related to E(0 1 02) by
"E = E(0 ,7r/2).

The total lifting pressure coefficient at any point within region 2
is then

AC, = ACp + AC

The integrations for spanwise lift and pitching moment can be
obtained by integrating Equations (37) and (39) numerically. Howev.r, caution must
be taken in these integrations because for subsonic leading edges, the lifting pressure
goes like IAl//"" near the leading edge. In this vicinity, more mesh points must be
added to the flow field to get an accurate ir tegration.

'Fihe total wing normal force and pitching moment can be easily
obtained by numerical integration of Equations (38) and (40). The cho.1'dwise center
of pressure is then found from Equation (43) and the spanwise center of pressure
from Equation (44).

3. Transonic Flow

As mentioned earlier, airfoil thickness has a second order 'ffect on
lift ill subsonic and supersonic flow. However, this is not true in transonic flow so
the assunmption of a flat plate with zero thickness is no longer valid except 'or very
thin wings. Furthermore, as M. approaches unity, Equation (1) cannot be applied
because the term (1 M2,)-1 )0 becomes of the same order as nonlinear terms which
have been neglected in deriving this equation from small perturbation theory.

Recent progress in the field of transoni, aerodynamics has greatly
advanced the state-of-the-art. However, at present, practical methods for flow field
computation are still seveo'ly limited. For example, solutions for three-dimensional
swept and tapered wings with thickness do not exist, even in approximnate form. In
light of these considerations, an empirical approach to wing lift in transonic flow
will be used. The metliod adopted is that presented in DATCOM.( 24 ) This procedure
accounts, in an empirical manner, for sweep, Mach number, aspect ratio, and
thickness ratio but not lbr airfoil section.
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To apply the above empirical procedure, the force break Mach number
fia foundd from Figure i3A tor a wing of zero sweep and corrected for sweep by

Figare 13B. Tlhe lift curve slope at the force break Mach number is then computed
by a simple expression derived from lifting line theorv:(25)

} (C 27 = 2(59)

CN fb 2+ I R 2 (g 2 + tan 2 A,/) + 41 (

This value is corrected to agree with experiment according to Figure 14A. The
abrupt decrease in lift curve slope associated with thick wings is approximated by
the relation:

( CN (I -' a/c)(CNQ)fb (60)

where a/c is given in Figure 14B. The Mach mmber at point a is:

M = +0.07 (60A)

The subsequent rise in CN, to a value at point b is

"(CN = b/c)(CN )f) (61)

where b/c is given in Figure 14C. The Mach number at point b is

Mb = Mfb +0.14 (61A)

'rie normal force curve slope at M > 1.2 is calculated by supersonic thin Wing
theory and for M < Mfb by lifting surface theory. F'rom this empirical correlation
one obtains (CN t.b, (CNO), (CNO)I at the Mach numbers MfbW Mfb +.07, and
.MIb + .14. For values of CNO in transonic flow in between these Mach numbers,
interpolation is used.

38



(Mfb

0 4 8 12 16

THICKNESS RATIO (% CHORD)

FIGURE 13A. FORCE-BREAK MACH NUMBER FOR ZERO SWEEP

1.09

(MMfb)Af=0

0 20 40 60 80 100
AL (DEG)

FIGURE 138. SWEEP CORRECTION FOR FORCE-BREAK MACH NUMBER

FIGURE 13. TRANSONIC FORCE-BREAK MACH NUMBER

39C



i- R 6\B,"

80 4 8 12 16

THICKNESS RATIO (% CHORD)

FIGURE 14A. CORRECTION TO LIFT-CURVE SLOPE AT FORCE-BREAK MACH
NUMBER

.8 -8-- -- -

.6 - - 4

c 4- -

-.2 i

0 4 8 12 16
THICKNESS RATIO (% CHORD)

FIGURE 14B. CHART FOR DETERMINING LIFT- CURVE SLOPE AT Ma

.2

b

0 T T ]

0 4 8 12 16
THICKNESS RATIO (%CHORD)

FIGURE 14C. CHART FOR DETERMINING LIFT-CURVE SLOPE AT Mb

FIGURE 14. CHART FOR DETERMINING TRANSONIC LIFT-CURVE
SLOPE AT Ma AND Mb

.4or _______ ____



The center of pressure of wing alone lift is usually around the quarter
chord for subsonic flow and half chord for supersonic flow. Transition from
subsonic to supersonic flow is assumed to occur in a linear fashion between values
calculated at MN1 slightly less than M fb and M. > 1.2. The pitching moment
coefficient derivative of the wing alone is then:

X CN (62)

D. Interference Lift

Interference lift is broken down into three parts: lift of canard or tail
due to presence of body. lift of body due to presence of wing or canard, and
vortex lift on tail due to wing shed or body shed vortices. The methods used to
calculate the interference lift components are essentihlly those presented in
Reference 26. Tile necessary eqluations for the various calculations will be repeated
herein, but for the details of the derivations, the reader is referred to the above
reference.

The method used by Morikawa(27) for presenting lift interfer,.ence is
Sadopted. He defines the wing alone as the exposed half wings joined together. The
lift of the combination is related to the lift of the wing alone by the lactor K( so
that

LC, = Kc Lw (63)

Kc is aclually composed of three components,

=X B(w) K ( 1 ) 11  (64)

which are the ratios of the body lift in presence of the wing, wing lif in presence
of body, and body lift to the lift of the wing alone. That is:
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KBiw) L- (65A)

LwKB) (65B)Kw(B) = L

t = __ (65C)
Lw

We will not be concerned with K1B as it was found in Refcrence i as discussed
earlier. The factors K(,) and K ,(B) are found from a straightforward application
of slender body tneory and are:

(K- r2/s 2 )- 2/r (1 +r4/s 4)[½tan-' IA(s/r- r/s)+ 7r/41
K1(w) =(1 - r/s32

r2/s2 [(s/r--r/s) + 2 tan- (r/s)I (66)

(0 - r/s)2

2/7r 0(I + r4I/s4 )[ V2 tan 1/2(/r - r/s ) + 7r/41
W(OO- r/s) 2

(67)

r2•/s 2[(s/r- r/s)+ 2 tan-I (r/s)}
(i- r/s) 2

K KWB) and KP(W) of Equations (66) and (67) are related to each other by:

KW(00 + KB(w) (1 +r/s) 2  (68)
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Values of these parameters are plotted in Figure 15. Equation (66) is used to

calculat- KB(w) for all subsonic Mach numbers and for supersonic Mach numbers if

:3AR(i + X) l/mi) + I 1< 4. If A/R(I + )[l/(ml)+ 11 > 4, Nielsen( 2 8 ) has shown

that for no afterbody (set.; Figure 10), a more appropriate value of KB(w) can be

found from:

_ _ I•I m__
K B w [ (C ) (X + l)(s/r - 17 8 "/-gd\2 +1I C

Cos- III +2 Cos-I +mCr/dj -mL 1 (d

+ ,11 t'0, Vm2i,- l sill V12_27 cos -1t (69A)

whell pim > I and cr/ 3 > d. If Plm < I and c1h)' > d, KB(w) is lound from:

16%fi'r (_d i

K , I (CN, +,II(X s/r" 1)= + ON /r (9r32l1 +

(69 B)

- (111)32  + 111 k'Pim + I ta n' - ta n~(~- I ==n.

If c1/P < d in Equations (69A) or (69B), c[/p is set equal to d. For an infinite

afterbody behind the wing or canard (see Figur, 16), Equatioms (69A) and (69B)

are replaced by:
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K( 2 *-(CN,)wm (sira- 00 + X) -+
13uni -W) jýd).~ ~

A• (1 + l/Gi)•3d/cr] co- [/ .... .: i
2 /+

gil Cs (70A)

L +f m +(1 3m )J lde

for r13 > I and by

(C +0'( r + 11010)1jf- 1

KB(%v)[u(~W(~ 1)( N? 0 +~ C~3
; 7/ od I+4n }

,+(I + l lnt3) - 2 I + I/(n63))L- i (70B1)i" e r an + I + ultnlo~dfcr

for 1111 < I Fmr cases in between no afterbody and an infinite aferbody, K I,•ay be

found approximately by linearly int-rpoating between the values given by Equations ((0)

and (70). That is, refetring to Figure 16,

[K (KB(w]IA - [K NAw)] Ni (71)

1B(w I S d cotI pA FT N rA

Here the subscripts SA, IA, and NA refer to short, infinite, and no afterbody.

r'spectively.

In addition to the normal force due to angle ol attack, there is a

normal force created due to wing deflection 5. The lift of a wing due to a

dellection 6 is given by:
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r ,win) = kwil)(CNO a (72)

(2 " I, r+16 + wl ('/r) 2 + 2 i/0 2tr [(s0 2 
-

I(, , 2 + +n

li'r +r) 4% to %/)

""ri '. / !r - %/r)P04/r -)5•/rI L(0/r)2 + 1 J

If%,/r+_ II____1 8 r(L /r)2 + (73)
+ - o/r1% 1011 L _ % /r)?r I+ ) L2q/ JI2r

liiv lift oti thc hody dile to the control deflection Is

)"N8,W) kA48lfrNOlwV (74)

KV 111) kwf N) (75)

k , and Kiti t are given in Figure 15 as a function of r!s.

Strctly speaking. Equations (66). (67). and (73) apply to slender
win,,-I.od• ,'mrpti1r:Itions which have low aspect ratio wings. Furthermore, the

tr1.!inV ,,I,', of these wings must be perpendicualr to the body axis or swept

hfrrwaid i•|,t canrot be swept back. Neilsen (26 ) has shown that good results can be

,I'n,=in, lotr thi intcrfellnce lift components for high aspect ratio wings even

vio'nii tihe slcndkr body approximation is madc. However, if the wing trailing edge
is %wýwpt N:ick the previous slender body formulas are not applicable without ftirther
%iild\,. For wings which have swept back trailing edges, and where slendqr body
tij,,rk, j, i.i,,'(I to calcuite interference lift, it seems reasonable to assume the
inai,,,li,• t ot, the wing cuic to the presence of the body Is distributed evenly

limig the wing chord and is concentrated near the root. With this assumptior, the
.,I, , il com11ponents or a swept back wing may be approximated by:
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[K [K) Gic

Kw(b]~ 11 [i K~. 1  l)

;11 Os' 11 11, =(kw (B JI - [k. w{(B j)G

where G (Cr.)i/(Cr)1 and the subscript 11 refers to the actual wing being
tonsidered and subscript I refers to the wing for which the slender body Etquations
(00). (67), and (73) assumes, Figure 17 indicates how the above procedure is carried
out.

The negative lift caused by downwash of the canard shed vortex on the
tail is given by-:

(CN,•)w CN ,)j j1[Kw ,, ,sin o•+ k• ,(,,,in 81i~s - r)w Sw
i; C.. 2TrR.w.(lf - rw, )S~CN =,,S, (7o)

This e('1ation is determined from line-vortex theory assuffming only one trailing
vortex per forward winp panel. The lateral location of the vortex, l , measured
from the body center line is:

fv (Cr (77)

-:ihe span loading at the root (Cn'cij •md normal for,.: coefficient are known for the
particular wing geemetry as dkisssed previously. The interference factor, i. of

uIIation (76) is.

4,



DESIRE: K(8jfK 13 w)]

W[kw {~k 8(w)]

orBODY SURFACE
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/.. BODY SURFACE
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FIGURE 17. PROCEDURE USED TO CALCULATE INTERFERENCE
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/r fr ; 1)
b L6 +L , b

where

L r f ;)= {s- rX- - ?) 112 + (f-)2

rs-r +/ th ta

fir 2 hrf 2

r1 r
fi f2 +h 2  hi = f2 +h12

lh = - 3 (c)\dW/4 sm 4 IQ.r+ - 3(crkw/4Isinox

Here it is assumed that the hinge line of the wing is at the quarter chord.

The only remaining lift is the negative lift on the tail due to the body
.hed vortex. This is

-4r' +2j (
CNII(V) -Tr + (79

LrI'Tl4I

5()



where

"P Kw a)c+k, 5
- () U(3 (CN W SW.V 4(f,.- r,,

-• The center of pressure of the wing lift in presence of the body, canard
s;hed vortex lift, and body shed vortex lift are all assumed to act at th• center of
pressure of the wing alone. The center of pressure of the body lift caused by the
wing is Mach number deper nt. Complicated expressions could be derived for
center of pressure of this sift ,.omponent in supersonic speeds analogous to
Equations (69) and (70). However, a good engineering approximation is to assume
that the center of pressure is at the tentroid of the cross-hatched area in Figure 16.
This eliminates the need for consideiing separat--iy the afterbody, no afterbody, and
short afterbody cases. Thus, for supersonic flow, the center of pressure of the body
lift caused by the wings is (measured from the wing leading edge):

c~d[2- o22d3/6+ XFT(2d- xAFT/3)-,x3/2 (80A)
Xep (cr - fld2/2 + xA T( 2 d - XA 0T/28)/2

where
-d/2 - xA F Tr/(38) -

X3 cr + XAFT [d- r 1,/205~~

for

Od- XA FT > 0 and (Od - r xArFT) < O

If Od - xA :T >, 0 and (Pd - c xAlFT) > 0, then:

3 /2 (c, + x•. 1-) 3 -_c+ x 2_ r__(80)
xCp (Cr+XA )2 X2 T (801)
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lHicall, if i3d - x. < 0. then

x Cp +d (-801C

Fltloition (80A) reprewnts the case where the Mach line from tile trailing edge
intersect the base .,,ervas that from the leading edge intersects the opposite side.
t-quation (80B) is used when both leading and trailing edge Mach lines from the
%king root chord intersct the base whereas Equation (80C0 is used when both Mach
lines intersect the opposite side.

For subsonic and transonic flow. tl,,-re is much less tendency for the lift
to be carried aft. For subsonic flow it i, reasonable to assume the body carry-over
lift acts at the center of pressure of the wing alone lift. In transonic flow, the
.enter of pres,ute is assumed to vary linearly between its value at the force break
Macl number and that computed for M = 1.2 by Fquation (80L

E. Summary Configuration

The total normal force of the entire configuration is:

+ [ + (K,(t + Kj, )) 'o + (kwV t + kj) 6] it (C )W

(It) + Kit (r)\ Cel (CN,,'Yr + CN I( + CN 1

DeImning

(CN -- [K w tq (B •)] (("N.)w

( = + e
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SB(W) 9W + (cp )B(W)

2 T(B) QT + (Rcp)T

SB•B(T) * qw +(Rep)B(T)

the center of pressure referenced to the nose tip may be written as:

Q N w (B) + CN %(W)+ C N T(B) (82)

L = NB +CN (w(B) B(w) TB(B)

+ CN B(T)•B(T) + ( cN +CN R v)

The pitching moment about the ,nose is then:

CM = CN2  (83)

A summary of the various theoretical and empirical procedures used to
calculate the static aer"' -f the wing or tail alone and interference effects
is given in Figure t .ady indicated, a summary of the body alone
procedures was given .. a..,re 2.
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M11. RESULTS AND DISCUSSION

A. Comparison With Exact Linear Theory

1. Wing Wave Drag

For wing- which have simple planforms, exact linear ttheory solutions
exist b5 hiu%,h the present numerical solutions may be compared. Simple planflrmis
are defined as wings with double wedge or biconvex airfoil sections with the same
airfoil s,.rlon and thitkness ratio all along the span. Simple planforms also hale
sharp leading and trailing edges.

Figure 19 compares the pressure coefficient of the present method
with that of exact linear theory for a biconvex airfoil design.0 3) The pressure
oetfficient has been divided by tic, the thickness to chord ratio, since it is constant

all along the span. As seen from the figure, the numerical solution gives essentially
exact results when compared with the solution of Reference 13.

Section wave drag along the span of a wing with a double wedge
airfoil section is given in Figures 20 and 21. Figure 20 is for a wing tapered to a
point (no tip effects) and Figure 21 is for a wing with fifty percent taper. The
exact analytical solution is takL.n from Reference 31. Section wave drag at seventeen
spanwise stations were computed but, as will be discussed later, only nine are
necessary fir reasonably accurate total wing drag. Again confidence in the numerical
solution is gained by the near perfect agreement with analythical solutions.

The final two figures comparing numerical drag calculations of simple
planfornis with ;\act solutions give total wing wave drag for biconvex and double
wedge airfoil seciions. The analytical so'itions come directly from the chars of
Reference 30 Figure 22 is for the double wedge airfoil wing and Figure 23 for the
biconvex airfoil section wing. Both wings have zero taper. Slight discrepancies of up
to three to five percent between the ,umerical and analytical solutions exist at
some Mach numbers as seen from the figures. This is due to the numerical
integiation which smoothes out kinks in the pressure curves and due to truncation

7 errors. However, in light of the accuracy of the exact linear theory compared with
experiment, this discrepancy is quite acceptable for design.

All of the preceding cases were for sharp leading and trailing edge
%imngs with simplc planforms. For more complicated configurations, closed form
linear theory solutions for drag have not been obtained. However, the present
method, which determincs the source strength locally can still be applied. For
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example. Consider thle Winl" Jlowrn in Figure 24. t~his winl, Ilas ; variable Atrloi
section and %ariahic tliickne'' all along, the span. Its design 1i, dictated by str''ictural.
rather than aerodynamic. coiisideratioo~s. Also shown onl the figure is a plot of
pressure ,.ocIliciciit a.ilong the chord for itwo spanwise locations.

A secoud eurnfplo of' wings not co~'ered oN c~act linear tlieoi-\ is tli-
winl,- with blunt lvadlin- and trailing xdges Figure 25 t-ves thc, total drag coefficienit
(wine pluts inri*.tan plus trailing edtge separa'ionl for a biconvex airfoil with blunt

ldng, and traiiniig ed- ý and For three Mach numbers. Although no experimental
dat,! o\i,.t to compare tile theory with, the trends are generally Wvhat One WOUIIk

1),:t. Thar is bluint ness has a large ef fect on (Irag at high supersonic Mach
niumbers but at low stipersonic Machi numbers. the dlf'ect is not so large. However.

atthese low supersonic Machi numbers the linear tbeury results for very small
Ilntniess ratios ate questionable. This is because inl the neighborhood of thle leading
edL'. where the slope is niear the ma ximuitm of' ififeen de-re\'s (linear theory starts atl
slopes of fifteen deigree., where Newtonian theory ends). thle pressure coeftlciewnk
predlicitA l b linear thcorý ar'o quite large. dTe(iscont inuity between thle pre~ssit.
cod l':Cient of Newtonian theory aind that of' perturbation theory is thus much larger.
Hlowever. is the blunt ness ratio is increased the area over which linear theors% is
aplilled decreases and hence on,., e\pects thle results to be somewhat better.

2. Wing Lift

T'hree cas-*ns are considered as test cames to com~pare tile nume11rical
Solutions with Closed forni mialytical solutions such a,; presen ted in Referen''es 32

and33.'fles inlud aWinio with subsonlic leaIding" and supersonic trailing edgeýs. a
wing wvit h st~personlic leading and trailing edges with the Mfacli line intersecting tile
tip. andI a winge witil stipersi.)ic leading and trailing edges with the Macli line
intersecting the trailinig edge.. hiach of these cases is sufflicientfly different so as to
check all met hodology dleveloped in the numerical calcidl~fion of lift onl winl(,, iii
stuwersoiiic nohw. Thei theory, used in subsovic nlow has been p~reviously' verifiedI by
('hadwick.1 221 Test (data niust suffice to determiine dhe correctness and accuracs of
tile transonic tmet"odolog\'

20 Comipares tie wving o.ad ing along the spanl of a wing with
subsonlic leading anl] supersonic trailing edpes corresponding to thle [ir'st test case
above, The Maich lines and regions where lineajr suiperposition of' solutions occur are
mnd;..ated onl (lhe Ijeulre. As I% app~arent. tlie numneric'al solution is the same iN tilie
anlylheal solttiofiou to (lie accuracy ,I olot ting thie data.

[guntes 27 and Di comparc the an~llatical and nmerlicaul \pl loading
calc' ia tions for- a \kqpx'isomt. leading and t railing edge wiiig In Figure 27. (lie Mach
linle just barelx hitcrsectk the tiaihing" cdlte where-as il figure 28 thle Mad) hine5of
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intersects tile tip. In both cases. the analytical solution is reproduced by the
numerical procedure.

B. Comparison With Experiment

Several example cases are ,:hosen to compare with experimental data
so as to place some degree of accuracy on the theory. The first of these is a ten
caliber missile with clipped delta tail fins. The experimental cata are taken from
Reference 34. which) gives the static aerodynamics for 0.8 < MI < 1.3. Figure 29
compares theoretical drag coefficient, normal force coefficient derivative, and center
of pre,,sure with the experiment as a function of Mach number and for a = 1.
Recall that for M_ > 1.2. the lift and drag (except for base drag) was calculated
numerically whereas for 0.8 < M_ < 1.2, the theory consists of mos1l• empirical
procedures. For M_ < 0.8, the wing lift is calculated analytically but most other
force components are computed empirically. With the exception of the noillial force
coefficient slope at M_, = 0.8 and 0.85, the theory is well within ten percent or
experiment. The maximum error in center of pressure for this configuration is five
percent of the length or half a caliber.

The next case considered is again taken from Reference 34 where the
same body geometry was tested with several different fins present. The case
considered is for aspect ratio two rectangular fins flush with the 'base. The bod. is
the ';aine as that shown in Figure 29. Figure 30A presents the small angle-of-altack
results for CO, CN , and x as a function of Mach number and Figure 30B gives
C)CD, CN- and xc,, as a function of n: for Mach number 1.3. In both Figure% 30A
and 30B. the results are acceptable from an accuracy standpoint, although the ditag
coefficients at M, = 1.20 and 1.3 are off more than for most conligurations
considered. The reason most likely lies with the empirical estimation of base
pressure increase due to presence of fins. At M_ = 1.3, this component accounts
for about 0.05 of the dr'ig coefficient, which, for this wing-body configuration,
appears high.

The final example chosen is a complex canard-body-tai' configuration.
-FThe body nose is sixty percent blunt with two ogive segments aid a 0.7 caliber
boattail. The canard has in aspect ratio of two with a swveepbick angtc of 15". Its
shape consists of a sharp wedge leading edge with a constant thickness section following.
The trailing edge is truncated parallel to the leading edge. The tail has ni aspect
ratio of four with cylindrical leading and trailing edges and where A, = 300.
A, = 22.V' A3 = 37', and A4 = 300. The tail thickness to chord ratio also varies
along the span. The detailed canard and wing geometry listed above is not iweded
In calculating lift, but it must be known for drag computations. The result% ,,f the
calculations for this configuration are shown in Figure 31. Figure 31 A gi\e,, the
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FIGURE 308. STATIC AERODYNAMICS OF A MISSILE
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normal force and center of' pressure tI~rm~ 1.6 and at var, sage 1 tak
Four curves are sl~own in the figure. canard-bod.\-iail with eanardE del~ected tIpl bly
tell degrees, canard-bodlv-tail with no Canard dleflection, body-tail, and fimahll body,
alone. Several pointz. are worthy of note in this figure. First of all tilt body aloneo
solution agrees yen', well with fihe unpublished experimental data uip to (k 4

.Above Q = 0,% tile !heory is low which is probably due to not tal~inc iflic
account Re> noki's number effect in the body crosstlow dirag coethcient. Thle lie\(
point is that t1o1 th~is CollfiguLrationl, thle tail lift is about tenl percen; too high and
the canard lift about 15'", too low so that the total lift agrees almost perfectly
with thle expetimlental data Up to the point where stall begins to occur (a ;;Ž W4).

T il in Durn Cause% the center of' pressure to be miore rearward than thec
experimeontal dat., suggest by\ about half a caliber. it is suispected that die theor\
being, high fo~r the high asipect ratio tail and low for thle moderate .sp.'ct ratio
canard is due to the Iliowlield interaction effects fromt the complex configuration
and will not in -general be true for other cases. However, it doeN indicate that the
theory canl bo tied quite efftectively inl design, even ror quite comiplex wing-body-tail
geometries. '[hle final point it) be emphasizedI front Figure 31IA k (the f'act (hat im'

attempt has becii made to predlict stall[ characteristics. As see Intefgr.orti
conf iguration, stall occurs around a= 1V5 at Mjv_ 1 .6. However, if thle wing,
thickness or ficestream Mfacli number is Changed thle stalling angle of attack will also
Chacnge.

'The drag characteristics for this ,ame missile are shown in)
Figure 3113. The dragi is qhown ats a function of' Mach number and] again the total
force is brob-en domN it into itIs components: bodN alone, b~ody tail. and

canad-bdy-ailThe body alone drag is acceptable in supersonic and sboi o

bu11t is unlacceptable ill tranlsonlic flow wvhere thle emp~lirical nature of' thle theory doý..
not account for nose bluntness correctly,. Trie willg alono drag shown at the bot toit
figure, includes the increase in base drag due to tails. This causes the tail (Ira! It"
be highl becaulse thle theory predicts this base (drag increase to be signit'icanthv hivelic
than thie experimental data suiggest. IHowever, the body-tai drag is still wit hin tie

± ( catagory. Finally, the canard drag shown at the bottom figute. is added lo
thle body-tail (drag, and thle overpredietion o1' tail drag 6, compensa ted oiniwbat I)'
thle uvader lprcdic.lion of' canaird drag.

As was mentIioned earlier, thie tail has aI cyl~ndrical leading Mplg. tot

which the combined Newtonian pertuirbat ion theory must he uised to ccialculateIho

pressure c~oefficient Fgigre 31 C pr-esents this pressure coef'ficient in the vicinit. ()I
thle leading edge for Maclh number two and at aI %panwie stItic bI ion o

yi( b12 ) I 12.511. Thie otis~ont inulity in presscirv coefficient caused bv thie diflI r,,nkkc
in Newtonian and porirti'baticoi theor\ estimates, occui-, at aI iml~h pomd W~

to.000.

71



6-THEORY EXP COMPONENT

o CANARD -BODY-TAIL (LSc=IO
0CANARD- BODY-TAIL (6c=O") .•-, tA BODY-TAIL
O BODY
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0 II I
0 4 8 12 16 20

(X (DEG)
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to" hot 15'8 • 1. 3 1 -
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FROM BASE) -,9i

4 E 7.6

"- - 3-0- - 3

0---------- ----. '0.70 4 8 I2 16 '20 -
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FIGURE 31A. NORMAL FORCES AND CENTER OF PRESSURE OF

A MISSILE CONFIGURATION; /R•:4, Pc:2' Mo..6
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FIGURE 31B. DRAG OF A MISSILE CONFIGURATION AND
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y/(b/2) 12.5%

MODIFIED NEWTONIAN THEORY

0.8-

Cp

04 DISCONTINUITY AT MATCH POINT
/

PERTURBATION THEORY

0.04
0.0 .01 .02 .03 .04 .05

x/C

ELLIPSE

RLE

Voo --"
RLE/COSJLI AIRFOIL SECTION AT y/0b/2)= 12.5%

FIGURE 31C. PRESSURE COEFFICIENT ON LEADING EDGE OF
A BLUNT LEADING EDGE WING; a.lI=30, Moo:2,
b O.92- CR: .23', RI£ .0021', tR .0167, tt: .0042'

74



C. Computational Time and Cost

"Although the method presented herein for con.ptiting aerodynamics of
guided or unguided projectiles actually consists of several rather complicated
theoretical and empirical procedures, the cost to obtain ."otce and moment
predictions is relatively small. For example, the most complicated configuration
considered to date was the canard-body-tail shape in Figure 31. To compute the
aerodynamics aý ten Mach numbers ibr a smali angle-of-attack takes about five
minutes on the CDC 6700 computei or costs about $75. Aer.dynimics at
s;upersonic Macth numbers costs about twice as much per MIach number thani ý1
sutbsonic or transonic Mach numbers. If the body lw~s a pointed nose, or if there
tre no canards, or if the tails are absent, the above time and cost can ,e reduced
considerably. For example, consider the tpi .d body-tail configurations of Figures
29 and 30. These take less than two minutes of execution time for ten Mach
numbers and cost about $25. It is thus believed that the present method is very
cost effective compared to experimental method- in that reasonably accurate result%
for forces and moments can be obtained at a relatively small cost.

a75
A29



IV. CONCLUSIONS AND RECOMMENDATIONS

I. A general method has been developed consisting of several theoretical and
empirical procedures to calcuiate lift, drag, and center of pressure on
wing-body-tail configurations from Mach number zeru to about threc and for
angles of attack to about fifteen degrees.

2. Comparison of this method with experiment for several configurations indicates
that accuracies of ± 10% can be obtained for force coefficients of ms't
configurations. This is at a cost of S75 or less for ten Mach numbers in the
range 0 < MNI < 3.

3. First-order theory can be used in conjunction with modified Newtonian theory,
to calculate wave drag on wings with blunt leading edges. However, at low
supersonic Mach :iumbers (M_ < 1.5) relatively large discontinuities in pressure
coefficient exist at the match point.

4. Wave drag of wings with variable airfoil section an(l thickness to chord ratio
along the span can still be calculated by conical flow theory if the lcal source
strength is computed at each point on the wing based on the local slopc i

the point.

5. Changes in body base pressure due to the presence of tail surft,,s is not known
sufficiently for all airfoil shapes. It is recommended that a systematic wind
tunnel study be conducted for Mach number, 0 < Mý < 3, angle of attack,
0 < c < 20', and various airfoil geometries to empirically estimate this change.

6. Aithough much progress has been made in transonic flow theory, no simple
method exists for calculating wing lift or wave drag on complicated wing
configurations. It is thus recommended that much work continue in this area
ontil practical tools are developed.

6,
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GEOMETRY FOR BLUNT LEADING EDGE WING

Assuming tile wing has a cylindrical leading edge when viewed in a plane
normal to the wing, it will have an elliptical cross-section when viewed in a plane
parallel to the freestream. The equation of an ellipse is:

- + I (A -]

a2 a2

where a, and a, are the semi-major and semi-minor axis, respectively. If the radius
"of the cylindrical leading edge is denoted by rLE then:

aI = rLl[/cosAI (A-2)

a, =rLE

Differentiating Equation (1), the local slope at any point along the elliptical airfoil
leading edge is:

•? •!•) csA. r LE

icos A- x -cos°A (A-3)

!i Defining 6i as the angle which the tangent to the surlface at the point x,y,z makes
with the x axis, then

(xyz)i tn = tan (y"- x cos A (A-4)

Here the leadivg edge radius, rLL . is allowed to vary in the spanwise direction.

Now if' it is desired to determine the coordinates of a given point on the
ellipse given a value of 6, then Equations (A-i) and (A-2) can be solved
simultaneously to obtain:

. A-1



X L F(Y) [dr F(A5"cos A, (A-5L

rLE(Y)cosAl ACosA "

wheretan L rL(y)j (A-6)

F= tan 5
I ri + /osA4\ 2

{ktanS/

A-2
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NEWTONIAN WAVE DRAG COEFFICIENT OF BLUNT LEADING EDGE WING

- X I
X1X

SThe wing planform and coordinate systems are shown in the above sketch,
Consider a cross-scction perpendicular to the leading edge or along the x' axis. The
leading edge will be cylindrical in shape as seen below.

zz

r Y
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nThe elemental force acting on the surface area of the wing leading edge is:

P cos 0d~ , =dA (B-!I)

where

dA = rLE(y')dOdy'

Hence, for one fin we have

! 0 o Ub!(2 A) CO P

CI•, I=- V- cos OrLF (y')d0Ody'
S' frcf fJ ;P4 , V)

S6(2 I-2 )

oi 1/(2 cOs A i)

+ c cos OrL (y')dOdy'

But the last integral of Equation (B-2) is zero when considered over the entire
airfoil surface so Equation (B-2) may be written:

Cx 2 f" u b/(2 CoS.A 1.C,

Sr-, f Cf cos OrL 1 (y'gd0dy' (B-3)

For modified Newtonian theory,

Cp = CPO cos2 0 (B-4)

where 0 is the angle between a normal to the surface and the freestream velocity
vector.

B-2



To find 0 define 7A as the unit vector normal to th. surface so:

A ,A A

77 = 7r e, x .+7 P I + 7 ,i , (1B-5)

Here )?,,, Irv. , are the direction cosi;,es in the U•-,, •,, directions.
respectively and are 7r1, = cos 0., = 0,t? , = sin 0. Now according to the (lot
product of two vectors, A.- B =A I B I cos 0, one may write:

Cos 0
IV,. I 1771 ( -6)

f. But,

u'~,v' +w', (1-7)

where

U' Vcos ,A1 v' V:V sin A, and w' =0.

Substituting (B-5) and (B-7) into (B-6) and performing the (lot product
there is obtained:

cos 0 = cos A, cos 0 (B-8)

Thus,

Cp (11) (0os2 AI cos2 0

B-3
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anti (B-3) becomes:

cCx os 2 A, Ry Cos r() cos3 0d dy' (B-9)

Integrating the infside integral.

S Cp Cos- Ai Sin3 0 2 c0S A

=. I ill 0 uOr L -Y!) dvr"S Sref- 3 f

If it is assumed that the leading edgc radius varies linearly from its maximum at
the root chord to its minimum at the tip chord then:

rL (YL ) = (RT - R•) X-( 2 cos A, ) + RR (B-10)

Substituting this relation into the above integral and performing the integration there
is obtained:

C bCl,0 cos AI si3 0'(B-1I

S RA VG 0 3 O (

vwhere RAVG = (Rit + R.l )/2. Equation (B-I l) is for one fin. If there are four finis
present then the axial force coefficient in thie x direction for the blunt portion
of the fin is:

4Ccos A 4bCs cos 2 AIRAVG , - u (B- 2)

3B-4
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TRAILING EDGE SEPARATION DRAG

The incremcnfal force on the elemental area of the wing trailing edg-e shown in
the sketch below is:

dC 'JA dy f
P~ PSt P S e

TdA Ady

-k-dyTE

Cp (y)

In analogy to the work of Reference 1, an empirical expression which takes intob
account the slope of the wing traifing edge is

CP(-,) Cp d(y_ (-2
CIi) - (I, t(y) ('2

Again, assuming a linear variation of the trailing edge diameter from (dR )TI aA the
root to (di )TL at the tip, the diameter at any y location is:

(TL (y) --- )T . + dT) I.I. (d •)l j (C-3)

where

•.,• "r -- 2y~b.

Then I (Illation (C-!) bccoine":

C-I



Cp•3 b dl, : bC.B ICl I t(y) dy = , "l' dT1:(7v)dY (C-4)

Substituting (('-3) into (C-4) and integrating yields

bCp rC - T Tj (C-5)S. • 2S rerL

or ror four fins:

, (d Ir +(d.r, = ( RR)T"L +(RT)Tr] ()I-6)

(C-6

C 3

• S r rS r t

(2-

F.
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GLOSSARY

,Aý Aspect ratio

b Wing span (dot's not include body radius)

c Chord length at any point along span

ACj Axial force coefficient = CD

AC Axial skin-friction drag coefficient

C A Trailing edge separation drag coefficient

CD Zero lift drag cu, fficient
Wave drag coefficient of wing

Cd Cross-flow drag coefficient of wing

Cd Spanwise wave drag coefficient
dw

Cfr Laminar ski..-friction coefficient

C IT Turbulent skin-friction coefficient

"!CM Pitching moment coefficient measured about nose tip (poaitive nose up).

!:!•CM Spanwise pitching moient of wing

C•, Pitching moment coefficient derivative (dCN,¶/da)

CN Normal force coefficient

CN Normal fore.: coefficient on tail of body shed vortex.SN13(V)

CNi Normal force coefficiuit on tail due 'o canard shed vortex.

CN Normal force cci:ffic.ent derivative (dCN/d,)

-D-1



GLOSSARY (Continued)

SCn Spanwise normal force of wvig

Cp Pressure coefficient

C Base pressure coefficient

C po Stagnation pressure coefficient

Cr1  Chord length at root of the leading edge portion of a modified double
wedge airfoil section

Cr2  Chord leigth at root of the trailing edge portion of a modified double
wedge airfoil section

•ACII Lifting pressure on wing

d Body diameter

E,F,K Edlliptic integrals

Sf Canard vortex semispan at canard trailing edge

h1 Height of canard shed vortex above body axis at tail center of pressure

Si Tail interference factor

KB Ratio of lift of body to that of wing

KR W) Ratio of lift of body in presence of wing to that of the wing alone

Kc Ratio of lift of canard-body-tail combination to that of wing alone

Kw(3 Ratio of lift of wing in presence of body to that of wing alone

k 1) (w Ratio of lift on body in presence of wing, due to a wing deflecion 6. to
that of wing alone

ki ki tanA1

2bD



GLOSSARY (Continued)

kW(b) Ratio of lift of wing in presence of body, due to a wing deflection 6, to
that of wing alone

SLC Lift of canard-body-tail combination

NM Mach number

rm in - cot A1

SRN Reynold's number

r Radius of body (variable)

rL U Radius of wing leading edge in a plane normal to leading edge

r-. Radius of wing trailing edge in a plane normal to trivhng edge

i Sref Reference area (maximum body cross-sectional area unwss wing alone is
considered iii which case the wing planform area is used)

WS Wing planfornm area

s Wing seimspan plus bod. radius at wing root chord

STw Wall temperature

St Wing thickness (variable)

u,v'w Perturbation velocities in the x,y,z diredtions, respectively

V Total velocity, V2  (U_ + u)2 + V2 + W2

x,y,z Rectangular coordinate system with x at nose tip, , out right wing, and z
positive up. If no body is present, x begins at wing root choid.

0 Angle of attack

D-3



4 GLOSSARY (Continued)

P• Circulation at wing-body juncture of combination

7y Ratio of specific heats (y = 1.4 for air)

6 Wing deflection angk

S77r•= kj/j3 1/= n

0 Angle betwmen a tangent to the local wing surface and freestream diredtion

01 Angle on blunt leading edge where Newtonian theory stops and
perturbation theowy begins (match point)

Ai Sweepback angle of a wing generator (i = 1,2,3,4) with i I the wing
leading edge and i = 4 the wing trailing edge

x Ratio of tip cniord to root chord (ct/,.r)

p1 Mach angle, i = sin- 1 (I /MNi,

v Coefficient of kinematic viscosity

U o = kiy/x

\Velocity potential

x Wedge half angle (measured parallcI to freestream) of wing airfoil section.

Subscripts

a Conditions at transonit Mach number Ma = Mfb+0.0 7

b Conditions at transonic Mach number M. = Mfb + 0.14

cp Center of pressure

lb Force break Mach number

IA Infinite afteibody

D-4
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GLOSSARY (Continued)

Subscripts

i.,ininar

"NA No afterbody
4,

r Root chord

"SA Short afterbody

"1" Turbulent

t Tip chord

VIS Viscous corillonenk

I Wing for which slender body values of interference lift are known.

1i Wing vith sweep for whiih representative values of interference lift are
desired

DO: Freestream conditions

D'
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